Skip to contents

'dsp_test' identifies differential spatial pattern (DSP) genes between conditions from spatially-resolved transcriptomics data, provided spatial clusters are available.

Usage

dsp_test(
  spe,
  design = NULL,
  cluster_col,
  sample_col,
  condition_col,
  min_counts = 20,
  min_non_zero_spots = 10,
  min_pct_cells = 0.5,
  filter_gene = FALSE,
  filter_cluster = TRUE,
  verbose = FALSE
)

Arguments

spe

SpatialExperiment or SingleCellExperiment.

design

Matrix or array. Numeric design matrix for a regression-like model created by `model.matrix` function.

cluster_col

Character. Column name of spatial clusters in colData(spe).

sample_col

Character. Column name of sample ids in colData(spe). Sample ids must be either a factor or character.

condition_col

Character. Column name of condition ids in colData(spe).

min_counts

Numeric. Minimum number of counts per sample (across all spots) for a gene to be analyzed.

min_non_zero_spots

Numeric. Minimum number of non-zero spots per sample, for a gene to be analyzed.

min_pct_cells

Numeric. Minimum percentage of cells required for each cluster to be included in the analysis across the specified conditions. Default value is 0.5 (i.e., 0.5% of total cells per cluster per condition).

filter_gene

Logical. If TRUE, dsp_test filters genes by requiring them to be expressed in at least 'min_non_zero_spots' cells and have at least 'min_counts' counts per sample across all locations.

filter_cluster

Logical. When set to TRUE, dsp_test excludes clusters that are insufficiently represented in the dataset. Only clusters meeting the 'min_pct_cells' threshold (i.e., containing at least the specified percentage of cells across all conditions) will be retained for analysis.

verbose

Logical. If TRUE, svg_test returns two more results: 'DGEGLM' and 'DGELRT' objects contain full statistics from 'edgeR::glmFit' and 'edgeR::glmLRT'.

Value

A list of results:

- "gene_results": a dataframe contains main edgeR test results;

- "estimated_y": a DGEList object contains the estimated common dispersion, which can later be used to speed-up calculation when testing individual clusters.

- "glmFit" (only if verbose = TRUE): a DGEGLM object contains full statistics from "edgeR::glmFit".

- "glmLRT" (only if verbose = TRUE): a DGELRT object contains full statistics from "edgeR::glmLRT".

Examples

## Load the example multi-sample multi-group spe object
spe <- muSpaData::Wei22_example()
#> see ?muSpaData and browseVignettes('muSpaData') for documentation
#> downloading 1 resources
#> retrieving 1 resource
#> loading from cache
#> require(“SpatialExperiment”)
# Fit the model via \code{\link{dsp_test}} function.
set.seed(123)
results_dsp <- dsp_test(spe = spe,
                        cluster_col = "Banksy_smooth",
                        sample_col = "sample_id",
                        condition_col = "condition",
                        verbose = FALSE)
#> Using 'dsp_test' for spatial variable pattern genes detection.
#> Filter low quality clusters: 
#> Cluster levels to keep: 0, 1, 2, 3, 4
#> Design model: row names represent sample names, followed by underscores and cluster names.
#>          (Intercept) condition20DPI condition2DPI cluster_id1 cluster_id2
#> 2DPI_1_0           1              0             1           0           0
#> 2DPI_2_0           1              0             1           0           0
#>          cluster_id3 cluster_id4 condition20DPI:cluster_id1
#> 2DPI_1_0           0           0                          0
#> 2DPI_2_0           0           0                          0
#>          condition2DPI:cluster_id1 condition20DPI:cluster_id2
#> 2DPI_1_0                         0                          0
#> 2DPI_2_0                         0                          0
#>          condition2DPI:cluster_id2 condition20DPI:cluster_id3
#> 2DPI_1_0                         0                          0
#> 2DPI_2_0                         0                          0
#>          condition2DPI:cluster_id3 condition20DPI:cluster_id4
#> 2DPI_1_0                         0                          0
#> 2DPI_2_0                         0                          0
#>          condition2DPI:cluster_id4
#> 2DPI_1_0                         0
#> 2DPI_2_0                         0

# dsp_test returns of an object:
# "gene_results": a dataframe contains main edgeR test results.

# We visualize differential results:
head(results_dsp, 3)
#>                       gene_id logFC.condition20DPI.cluster_id1
#> AMEX60DD014721 AMEX60DD014721                      -0.07170723
#> AMEX60DD045083 AMEX60DD045083                       0.08759059
#> AMEX60DD011151 AMEX60DD011151                      -0.97377297
#>                logFC.condition2DPI.cluster_id1 logFC.condition20DPI.cluster_id2
#> AMEX60DD014721                      -0.3898784                       -0.8510223
#> AMEX60DD045083                       0.5418637                       -1.3377605
#> AMEX60DD011151                      -2.1019048                        0.1861520
#>                logFC.condition2DPI.cluster_id2 logFC.condition20DPI.cluster_id3
#> AMEX60DD014721                       0.8526301                       -0.8328237
#> AMEX60DD045083                       1.1226997                        0.2478193
#> AMEX60DD011151                       0.4671347                       -0.4011555
#>                logFC.condition2DPI.cluster_id3 logFC.condition20DPI.cluster_id4
#> AMEX60DD014721                      -0.9450830                       0.22287797
#> AMEX60DD045083                       1.2666344                      -0.99648014
#> AMEX60DD011151                       0.4086612                      -0.01634095
#>                logFC.condition2DPI.cluster_id4   logCPM        LR       PValue
#> AMEX60DD014721                       0.2085777 9.344907 100.69288 3.081052e-18
#> AMEX60DD045083                      -0.7969334 7.505402  97.72697 1.243325e-17
#> AMEX60DD011151                       0.1810959 7.959492  85.69149 3.472538e-15
#>                         FDR
#> AMEX60DD014721 1.540526e-14
#> AMEX60DD045083 3.108313e-14
#> AMEX60DD011151 5.787563e-12